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On Lushnikov's Model of Gelation 
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We characterize gelation for models of polymers built up as infinite-volume 
limits of finite systems. We establish rigorously the occurrence of gelation in 
Lushnikov's model with reaction rate Rjk = jk. We obtain bounds on the size of 
the largest polymer in the system at time t. 
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1. I N T R O D U C T I O N  

Many recent studies (1 7) have been devoted to systems of 
polymers evolving through the irreversible aggregation reaction 

interacting 

( j ) + ( k )  Rjk , ( j + k )  (1) 

whereby polymers of lengths j and k link themselves together to form a 
polymer of length j + k; the number Rjk denotes the corresponding reaction 
rate. The standard approach to such a system is through Smoluchlovski's 
equations for the density xj(t)  of polymers made up of j  units in an infinite- 
volume homogeneous system, (2'6) 

Xl = -- ~ R l k X l X k  
k = l  (2)  

11 i Z R j_kxkxj Rjkxjx , j> 2 
k = l  

An alternative approach allowing a more detailed description has been 
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pioneered by Marcus (~ and studied in detail by Lushnikov(9): the state of 
a finite homogeneous system of polymers of lengths 1, 2, 3,..., N in a 
volume V is described by a vector n ~ N N, the j t h  component of which is 
the number ofj-mers. The only allowed transitions are of the form n ~ nj~ 
and nj~ ~ n, where 

n+=f(nl ,n  2 ..... nj--1 ..... n~--l,...,nj+k+l,...,nN) i f j C k  jk " 
((n~, n2,..., nj - 2  ..... nzj + 1 ..... nN) if j = k  

(3) 

and 

=f(nl,n2,...,nj+l ..... nk + 1,..., n j + k -  1 ..... nN) i f j r  
njk ((nl,nz,...,nj+2 ..... nzj--1,...,nx) i f j = k  (4) 

The evolution of the system is modeled by the Markov chain with forward 
equation 

N N 

p~(n) = ~ Qjk(nik ) p~(nj,~ )-- ~ Qjk(n) p~(n) (5) 
j , k=l  j , k=l  
nj+k~O njnk~O 

where p,(n) is the probability for the system to be in state n at time t [for 
some initial distribution po(n)] and the transition function is proportional 
to the reaction rate and to the density of pairs of reacting polymers: 

I 2~ Rjk njnk 

QJk(n) = t ~ Rjjnj(nj _ 1) 

if j # k  

if j = k  
(6) 

The connection between the two models is as follows: let Nl(t), 
N2(t) ..... NN(t ) be the random variables denoting the numbers of 
monomers, dimers ..... N-mers at time t in Lushnikov's model; then the 
expected values (1/V)E[Nj(t)] should coincide in the thermodynamic 
limit N~oo,  V~oo, N/V=p with the densities xj of Smoluchovski's 
model; see ref. 7. Lushnikov's description is obviously the more complete of 
the two, in the sense that it allows the investigation of finite-size effects and 
fluctuations; for instance, see ref. 4. Nevertheless, it is still not fully 
microscopic; it is an instance of the mesoscopic level of description in the 
sense of ref. 10. Both models ignore diffusion effects and are thus restricted 
to homogeneous systems. 

What makes the two models both interesting and difficult is the 
possibility that within a finite time a polymer of macroscopic length has 
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formed. In the Smoluchovski scheme this manifests itself by an apparent 
lack of conservation of the density of units: 

• jxj(t) < ~ jxj(O) for t> tg (7) 
j = l  j = l  

This depletion phenomenon seems to contradict the fact that all reactions 
(1) conserve the number of units, but the contradiction is resolved once 
one realizes that the left-hand side of (7) represents only the contribution 
of all polymers of finite length to the total density of units. 

The characterization of gelation in Lushnikov's model is necessarily 
different, since we start with a finite system. We propose the following 
definition: let Nl(t), N2(t),... , NN(t) be as above; we will say that there is no 
gelation at time t if the random variable 

V ~ ~ jNy(t) (8) 
~ N ~ j < ~ N  

(which gives the contribution to the total density of units by polymers of 
length larger than c~N, 0 < c~ ~< 1) is asymptotically concentrated at zero for 
all values of e; in other words, for all c~ > 0, x > 0: 

lim P I V - 1  ~ jNj(t)>~x]=O (9) 
N ~ oo ~:N <~ j <~ N 
V ~ o~3 

N / V  = p 

If condition (9) is violated, this means that a macroscopic fraction of the 
total density of units is tied up in polymers of macroscopic length, and this 
is the essence of the phenomenon of gelation. 

A complete characterization of the reaction rates Rjk leading to 
gelation is still an open problem in Smoluchovski's scheme (see, however, 
refs. 3, 5, and 11) and afortiori in the stochastic approach; in fact, the 
latter problem remains largely unexplored as far as rigorous results are 
concerned. In this paper we study the gelation problem in Lushnikov's 
model with reaction rate Rjk = jk. The corresponding deterministic problem 
is the earliest known example of gelation. (2'12'13) 

We have gathered in Section 2 the main properties of Lushnikov's 
model for a whole class of reaction rates. This is largely a review of known 
results, although the previously published proofs are often incorrect or 
unduly convoluted. An explicit solution of Eq. (5) can be obtained for 
suitable initial conditions, but this solution is too complicated to be really 
useful. In Section 3 we use simple bounds to prove that gelation occurs in 
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the model with reaction rate Rjk =jk.  We use the method of large devia- 
tions to obtain a describtion of the asymptotic distribution which replaces 
(9) beyond the gelation time. We conclude the paper with a conjecture. 

2. BASIC P R O P E R T I E S  OF L U S H N I K O V ' S  M O D E L  IN FINITE 
V O L U M E  

Consider the Markov chain defined by (3)-(6). A remarkable sim- 
plification occurs for a certain class of initial conditions when the reaction 
rate is of the form 

Rjk = j f (k)  + kf ( j )  (10) 

for some positive function f. If p0(n) is of the form 
N 

po(n) = 1 nj! j=l  
otherwise 

(11) 

where al ,  a2 ..... a N are nonnegative numbers such that 

n:~_.jnj=N j : l  F/j! 
(12) 

then the time-dependent probability p,(n) retains the form (11) with time- 
dependent numbers aj. 

More precisely: 

T h e o r e m  1. (i) Consider the diffential equation 

VgZN, 1(0 = -- (N-- 1 ) f(1 ) aN, 1(/) 
j --1 

VgtN, j ( t )  = 2 r f ( j - -  r) aN, r(t ) aN, j _  r(t) 
r = l  

- - ( N - - j )  f ( j ) a u ,  j(t), j>~2 

(13) 

with initial condition aN, j(O)=a j. It admits a unique solution {aN, j(t), 
j =  1, 2 ..... N}. This solution exists globally and is nonnegative for non- 
negative initial conditions. Moreover, 

Z aN, j(t)= Z a-2 
n:~.jn) = N j = 1 Flj �9 n:~.jnj=N j ~ l  flj! 

(14) 
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(ii) The solution of Eq. (5) with initial condition (11) is 
N 

if 

p,(n)= 1 nj! j=l (15) 
otherwise 

where the functions aN, j(t ) obey the differential equation and initial condi- 
tion in (i). 

ProoL (i) Let 
bx,  j ( t  ) -~ V-- le(U--J) f (J) t /Vau,  j ( t  ) (16) 

The new functions obey the equation 

bN, l(t)=0 
j - - 1  

bu, j(t) = ~ ( ( j - -  r) bN,~(t) bN, j_r(t) 
r = l  (17) 
x (exp{ [ ( N -  j) f ( j )  - ( N -  r) f (r)  - ( N - j  + r) 

x f ( j - r ) ] t / v } ) ,  j>~2 

which can be rewritten as the integral equation 

22 + ds r f ( j -  F) bN, r(S) bN, j_ r(S) bN'j(t) = V 

x (exp{ [ ( N - j )  f ( j )  - ( N -  r) f (r)  

- ( N - j  + r) f ( j -  r)]s/V}) (18) 

The right-hand side of (18) involves only functions bu, k, k < j ;  hence (18) 
is really a recursion relation with initial condition bu, l(t ) = al/V, and this 
makes both the uniqueness and the positivity of the solution obvious. 
Global existence follows from the continuity of the integrand. The proof of 
the normalization property (14) is straightforward. 

(ii) Insert the proposed solution (15) into the right-hand side of 
Eq. (5) to get 

= nz] j~k:V+k~0 

X aNj(t) au, k(t) + ~ 2Jf(j) a~ j(t) 
and + k(t) n2j a~v'zj (t) j:n2j~O 

- Z [ j f ( k ) + k f ( j ) ] n j n k -  ~ 2jf(j) n / ( n j - 1 )  1 
jv/- k:njnk Ys O j:ny~O ) 

822/58/5-6-17 
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Next use the obvious symmetry properties of the summands together with 
the fact that nj+k vanishes i f j + k > N  to rewrite the above expression as 

{ ~ ,  L y(k) 
l = 1  l '  k j = l  aN, j + k ( t )  

N N N 

- ~ knk ~ f(j)nj + ~ jf(j)nj 
k = l  j = l  j = l  

=--1 a~d(t)-- V j f ( q _ j )  aNd(t)  au, q_j ( t )  

V t= 1 nt! j 1 q=j+l aN, q(t)  

- ~ ( N - j )  f ( j ) n j  
j = l  

1 aNd(t ) }-, i f ( q _ j )  
g z=l nil q= 2 j=l au, q(t) 

- 2 ( N - j ) f ( j ) n j  
j =  1 

= p , , ( t )  I 

Remarks.  (i) Initial conditions of the form (11) contain as special 
cases probability distributions concentrated on any given q-mer; it suffices 
to take 

~[(N/q) !]  q/N if j = q  
(19) 

aj = ~0 otherwise 

(note that N must be a multiple of q if the whole system is made up of 
q-mers initially). Not  every probability distribution concentrated on a 
given configuration is in the class (11 ). 

(ii) Formula (11) resembles the multinomial distribution. Note, 
however, that the support condition Z j n j  = N is not the usual one. 

The differential equations (13) are not easy to handle in general. 
However, the solution can be computed exactly in the special case 
f ( j )  = j/2; this corresponds to the reaction rate Rj~ = jk ,  which is also the 
easiest nontrivial case in Smoluchovski's scheme. (2' 12,13) 

T h e o r e m  2. W h e n f ( j ) = j / 2 ,  the solution of Eq. (13) is 

( - l y  1 
aN, k ( t )  = e - (kN/2V)t  

j = l  J 

[t e("~+"~ + ' +"2)'/2v (20) 
nl,n2,...,nj>~ 1 

nl + r t2+  --- +nj k 
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where 

Proof. 
solutions of the equation 

2VAl(t) = ( N -  1) Al(t) 
j 1 

2VAj(t)= - ~ r ( j - r )  Ar(t) Aj r(t)+ ( N - j ) j A j ( t )  
r = l  

with initial conditions 

Aj(0) = {;~' j > N  j<~N 

k 1 
m! ~ ahat2 . .azm, n>0,  /30 1 (21) 

m = [ n / N ]  ll,12,._,lm~ 1 

1 1 + / 2 +  " ' "  + l m = n  

For fixed N, define the functions Aj(t), j = 1, 2, 3,..., to be the 

(22) 

(23) 

Obviously Aj(t) = aN, j( -- t) whenever j ~< N. 
The generating function 

G(x, t )= ~ Ak(2Vt)e ~x-N'), t>~O 
k = l  

is easily seen to obey the partial differential equation 

o6 (0G 2 02G 
Ot - \ 0x)  0x 2' t>~0 

(24) 

(25) 

This can be transformed into a linear equation: the function 

H(x, t) = e G~X' '~ (26) 

obeys the equation 
0H 02H 
0t 0x 2, t~>0, x~R (27) 

with initial condition 

This has the solution 

H(x, 0 ) = e x p (  ~ age gx) 
k = l  

(28) 

H(x, t)= ~ fl,e . . . .  2, 
n = O  

(29) 
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where the coefficients fin are as in (21). The series (29) converges because 
by (28), H(x, 0) is an entire function of e x and by (29) so is H(x, t) for 
every t. Next, for fixed t 1> 0, choose R such that when [eX[ < R 

[H(x, t ) -  11 = ~ fine . . . .  2t < 1 (30) 
n = l  

Then log H(x, t) is analytic in H(x, t), and thus in e X, so that 

G(x, t ) =  logH(x, t) 

n = l  

= ~ ,  ( - - 1 ) J - - I  

j = l  J 

... (nl + n 2 +  -.. + x fl.~fln2"" "fin; e(n'+n2+ +nj/x 2 2 n~), 
nbn2,...,n)= I 

implying by comparison with (24) 

k 

Ak(2Vt)e -kin= 
j = l  

_ l ) S  

x E 
nl,n2,...,n2>~ i 

h i + n 2 +  .. .  + n j = k  

flnifl.2"" "fins e (n~+n~+ +@t 

and thus for t >~ 0 

( _ l ) j  1 
Ak( t) = ek~'/2v 

j=l/~ J 

E 
nl,n2,...,ny >1 1 

n l + n 2 +  -"  + n j = k  

�9 .R p (n~+n~++4) ' /2V (31) tin,rio2" .~;- 

Finally, since both (31) and the right-hand side of (22) are analytic func- 
tions of t, formula (31) can be extended to t <0,  giving the result (20) for 
aN,~(t) = Ak(-- t). | 

Remarks. (i) The above proof is a rigorous version of those appear- 
ing in refs. 4 and 9. 
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(ii) For an initial distribution concentrated on q-mers (i.e., aj = 
[(N/q)!] q/u (~jq) the coefficients fin take the form 

so that 

f E(N/q)! ],/:v if n is a multiple of q 

otherwise 

au, kq(t ) = e - kN t /2v  ! 

~. ( _ l ) j  1 
• 

A., 
j = l  J 

• 2 
m b m 2 , . . . , m j ~  1 

m l + m 2 +  --- + m j = k  

eq2(m~ + m 2 + . . .  + m 2)  t /2 V 

ml! m2! . . .mj!  

(32) 

(33) 

and aN, j(t ) vanishes when j is not a multiple of q. 
Although formulas (15) and (20) give the full time-dependent 

probability distribution, most of our subsequent study is based on the 
mean number of polymers. 

Proposition 1. Let N,(t) be the random variable denoting the 
number of r-reefs at time t in the model defined by Eq. (4)-(6) with 
f ( j )  =j/2 and initial condition (11). Then 

N r aTJ m f i f o  r ( N - - r ) t / 2 V  

n : Z j n j = N  r j = l  nj. 

E E N N ( I ) ]  = aN, N(t  ) 

Proof. From theorem l(ii), 

E[Ur(t)J = ~ nr ~I a'~,j(t) 
n : 5 ~ j n ~ = N  j = l  F / j !  

N - -  r nj 

= aN,,(t) Z 1-I aN, (t) 
n:'f" jn j  = N r j = 1 f l j  ! 

But the factor of au, r(t ) in the above expression can be computed exactly 
because the equations for aN, j(t ) and ax r,j(t) differ only by a linear term; 
see (13). Hence, with f ( j )=j /2 ,  

aN, j (  t ) = e rjt/2V a N _ r , j (  t ) 
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and by Theorem l(i), 

E[ Nr( t ) ] = aN, r( t )e r(N--r)t/2V 

n ( t ] o  r(N--r) t /2V 
UN, r t ~ l c  

~_[r  a )  r , , j ( l )  
2 

n:Y~jnj=N--r  1 1  j = l  /"/J ! 

n:~. jn j=N r j = l  n j !  

Rema~. 

E[Nr(t)]  

With a monomer initial condition we get 

( N ! ) ( N  r)/U 
C r(N--r) t /2Va (g] 

( N -  r)! N,r\ ) 

N! ~ (--1);  1 
- ( N -  r)~T. e r(2N-r),/2V J= 1 J 

e(m~ + ... + m})t /2v 

• 2 
ml,m2,...,mj) 1 ml!mz!'"mj! 

m l + m 2 +  "-. + m j = r  

(34) 

(35) 

3. G E L A T I O N  

The proper characterization of gelation in a model constructed as the 
infinite-volume limit of a sequence of finite systems has been discussed in 
Section 1; see (8), (9). However, one can also use a weaker criterion 
imitated from (7), namely 

~, lim j E [ N j ( t ) ] <  ~ lim jE[Nj (0 ) ]  
j = l  N ~ o o  V j = l  U ~ o o  V 

v ~ o o  v ~ o o  
N/V = p N/V= p 

p (36) 

For simplicity, we restrict ourselves to a monomer initial condition and fix 
the initial density to be p = 1, so that we can take 

N =  V (37) 

With this choice the equations (17) for the functions bN, j defined in (16) 
become [recall f ( j )  = j/2 ] 

bu, a(t)=O 

l j - 1  
bu, j ( t ) =  ~ ~ r ( j _ r ) e - r ( j  r)t/N (38) 

r = l  

• b~,~(t) bu, j r(t), j > 2  
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with initial conditions [-see (19)] 

1 )I/N bN,~(O)=~(Ni 
(39) 

bu.j(0) =0 ,  j~>2 

It turns out that sufficient bounds to prove gelation can be obtained very 
simply from (38). 

L o m m a  1. The solution of the differential equation (38) with initial 
condition (39) obeys the bound 

1 . j - 2  bN, j ( ; ) ~  (N!)J/NJ~]-. tJ 1 

Proof. Obviously, bN,/(t)<. Cj(t), where Cj(t) obeys the equation 

C 1 ( / )  = 0 

1 j -  1 (40) 
Cj(t) = ~ ~ r ( j -  r) Cr(t ) Cj r(t) 

r = l  

with the same initial condition as bN.j. But the solution of (40) is easily 
found (see ref. 2) to be 

1 j j - 2  t j - 1  Cj( t ) = -~ ( NI )J/N ~ .  

so that the lemma follows. | 

The next lemma is used several times in the sequel (see formula 
5.13.20, p. 64, in ref. 14). 

kemma 2. The power series 

JJ- l zJ  
j =  1 ~ - .  

has radius of convergence e -  1. Moreover, for z ~> 0 the sum of the series is 
the smallest root of the equation xe x= z. 

For a pure monomer initial condition, the follow- P rop os i t i on  2. 
ing estimate holds: 

lim jE[Nj(t)]  <1_ 
j = l  N~oo  N t 

so that gelation takes place in the sense of criterion (36) at or before t = 1. 
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Proof. Using (34), (16), and Lemma 1, we get 

j N! .j 1 
E [ N j ( t ) ] < ~ N J ( N _ j ) !  e j(N j)t/NJj! t j 1 

�9 j i 
C jtcj2t/NJ t j 1 

j~ (41) 

Hence 

~, lim j E [ N j ( t ) ]  
N ~ o o  N 

j = l  

C JtJJ 1 
<~ �9 _ _  t ; _ l  

j= l  J!  

= ~ j ~ l  - 7 .  ~ ( te - t )  j 

1 
(smallest root  of xe x = te ') <~ 1 z - -  

t t 

We turn now to stronger criterion (9). We state our  result in terms of 
expectations first. 

T h e o r e m  3. For  a monomer  initial condition, the following limits 
hold: 

(i) For  any t < l o g 2 , 0 < c ~ < l ,  

lira ~ j E [ N j ( t ) ] _ O  (42) 
N ~  co ~ N < ~ j ~ N  N 

(ii) For  any e > 0 ,  3 > 0 ,  and t > t ~ ,  

lira ~ j E [ N j ( t ) ]  >>- 1 -x~(t___~) (43) 
N ~ o o  (fl(t)  6)N<~j<~N N t 

where t~ > 1 is the largest solution of 

te -(1 ~) '=e  1 (44) 

xAt )  is the smallest nonnegat ive solution of 

X e  x = t e  ( 1 - ~ ) t  (45) 

and fl(t) is the only positive root  (t > 1) of the function I , ( . ) :  [-0, 1 ] --* R 
defined by 

I t(x ) -- (1 - x) log(1 - x) - x log t + x( 1 - x) t (46) 
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These functions have the following properties: 

(a) x~(t) ~< 1 and lira x~(t) = 0 
t ~ o o  

a s  t -.--~ 

Remarks. (i) The result (42) is equivalent to the criterion (9) for 
absence of gelation because, since 

~, N -  IjNj( t ) 
ctN <~j ~ N 

is a nonnegative random variable, 

N ljNj(t)] 

(ii) Formula (43) says that a macroscopic fraction of the total den- 
sity of units is tied up in polymers of size Nil(t) or more. This is gelation 
with an explicit lower bound on the size of the largest polymer formed at 
time t. In view of property (a), gelation is asymptotically complete as 
t ----~ oo. 

(iii) In the Smoluchovski scheme, the blowup of the second moment 

j2xj(t) 
j - - I  

is often taken as an indication that gelation has occurred, u'2) We have this 
property here as a simple consequence of (43): 

~, j2E[Nj(t)] >1 2 j2EFNj(t)] 
j=l N N (fl(t)--~)N~<j<~ N 

This tends to infinity as N--+ oo for any t > 1. 

In order to prove the theorem, define the following family of measures 
on the Borel subsets of [0, 1]: 

mN.t(A)= ~ jE[Nj(t)]  (47) 
�9 N j : j / N E  A 
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Using the inequality (41), we see that 

t J - l ] j - 1  e j(N--j)t/N 
mN, t(A)<<- Z C 7  U j 

j:j/N e A 
(48) 

The right-hand side of (48) can be rewritten as the integral 

2N f A e-Nxl~ Nx(1 - X)te(NX- l)log(Nxt)~N(dX ) (49) 

with the probability measure on [0, 1 ]: 

/~v(A)= ~ 2 - N c  u (50) 
j: j/N ~ A 

But the sequence ~N has well-known properties; see ref. 15. 

I . e mma  3. The sequence of probability measures defined by (50) 
has the large-deviation property with rate function 

J (x )  = x log x + (1 - x) log(1 - x) + log 2 (51 

namely, 

1 
lim sup F l o g  #N(A) <. -- inf J(x),  A closed (52) 

N~eo xcA 

1 
lim in f - - log  pN(A)~> -- inf J(x),  A open (53) 
N ~  N x~A 

Our bound (48) reads 

mN, t(A ) <~ ~ eUGu'~(X)#u(dX ) 
~A 

(54) 

with 

I( 1/ 1 x - - ~  l o g ( x t ) - - x ( 1 - - x ) t + l o g 2 - -  logN, x~>~ 

G N't(X) = ~ 1 1 

[ - x ( 1 - x ) t + l o g  2 - ~ l o g  N, x < ~  

(55) 

As N ~  oo, GN, t(X) converges uniformly in x to 

G,(x)  = x log(xt) - x( 1 - x) t + log 2 (56) 

Using this fact and Theorem 3.5 in ref. 15, we get the following estimate. 
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P r o p o s i t i o n  3. 

sup l l o g  m u , , ( A ) ~  -- inf  { J ( x ) -  Gt(x)} lira 
N ~ o o  2u x ~ A  

= - inf I ,(x ) 
x'EA 

with I ,(x)  as in (46). 

It follows from Proposition 3 that the measure mN,~(A ) of any set A 
where It(x) is strictly positive tends to zero exponentially fast as N ~  oo. 
The properties of the rate function L: [-0, 1] ~ R are summarized in the 
following proposition. 

Proposition 4. (i) For  0 < t ~< log 2, l , (x)  is an increasing function 
of x vanishing only at the origin. 

(ii) For  t >  1, It(x) has a single positive root /?(t); I, is positive on 
(0,/~(t)) and negative on (/?(t), 1] (see Fig. 1). 

Remarks.  (i) One would expect It(x) to remain nonnegative all the 
way to t = 1; our bound is not good enough for this. 

(ii) In order to prove the property (b) of Theorem 3, we check that 

lim It(1 - 6(log t)/t) = 6 - 1 
,~ oo log t 

We can now complete the proof of Theorem 3. Part (i) follows 
immediately from Proposition 3 and Proposition 4(i). For part (ii) we note 
that 

j E [ X j ( t ) ]  _ 1 - mN, t([O, /~(t) -- c5)) 
N (fl(t)--6)N <~j<~ N 

= ] - - m N ,  t ( [ O  , ~ ) ) - - m N ,  t([g, , f l ( t ) - - ( ~ ) )  (57) 

The last term on the right-hand side of (57) tends to zero as N o  oo by 
Proposition 3 and Proposition 4(ii). It remains to bound the second term 
using (41): 

mu, t ([O,e))= ~, j E [ N j ( t ) ]  
N j<~ eN 

<<. ~ e - J ' e J ~ ' ~  -- t j -  1 

j<~N J" 

~ j ~ l J J - t ( t e  -(1 ~)')/=x~(t) 
<~ .= ~-. 

This completes the proof of Theorem 3. 
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Fig. 1. (a) The function l,(x) for t ~< log 2. (b) The function I,(x) for t > 1. 
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R e m a r k s .  (i) The proof of the properties of x~(t) stated in 
Theorem 3a is straightforward. 

(ii) We conjecture the following improvement of the bound of 
Lemma 1: 

1 bN, j(t ) ~ j ~  (N!) j/x (1 - e ~(J- t)/N)j 1 

We can check this up to arbitrary order, but we could not find a general 
proof (induction will definitely not give this result). If this conjecture is 
correct, it implies the inequality 

j E [ N j ( t ) ] < J  c N  e j(N--jlt/N(l_e ( j --I) t /N)j  l 
N " ~ N  

so that Proposition 3 holds with the following improved rate function in 
place of It(x): 

K , ( x )  = (1 - x )  log(1 - x) + x log 1 - e-Xi + x(1 - x) t 

The graph of this function has the shape shown in Fig. 2 for t > 1, 
where the roots r(t)  and R ( t )  have the behavior 

r ( t ) = l - e  I ' + o ( e - ~ ) ,  t ~ o o  

e-2' ?-% 
R ( t )  = 1 - - -  + o t --* oo 

t \ t / '  

4 i i2 

r(*)x,. . .J 1 

Fig. 2. The conjectured bound K,(x) for t > 1. 

;c 
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This  leads  to  the  fo l lowing  i m p r o v e d  ve r s ion  of  T h e o r e m  3(ii): for  eve ry  

6 > 0 ,  A > 0 ,  e > 0 ,  and  t > t , ,  

l im ~, j E [ N j ( t ) ]  >~ 1 - x~(t) 

N~o~z (r(t) 6)N<~j<~(R( t )+A)N N t 

s h o w i n g  tha t  at  t ime  t the size o f  the  la rges t  p o l y m e r  is b e t w e e n  
N ( 1 - e  I t) a n d  N ( 1 - e  2t/t). 
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